Hankel Tensors: Associated Hankel Matrices and Vandermonde Decomposition

by

LIQUN QI

Outline

Introduction

Associated Plane Tensors

Introduction

Associated Plane Tensors
Generating Functions . Vandermonde.

Spectral Properties of.

Vandermonde Decomposition and Complete Hankel Tensors

Spectral Properties of Odd Order Hankel Tensors

Bounds for the Largest and the Smallest Z-Eigenvalues

Final Remarks

1. Introduction

In 1861, H. Hankel started the research on Hankel matrices. Since then, Hankel matrices play an important role in linear algebra and its applications. As a natural extension of Hankel matrices, Hankel tensors arise from applications such as signal processing.

Denote $[n]:=\{1, \cdots, n\}$. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ be a real m th order n-dimensional

Introduction

Associated Plane Tensors tensor. If there is a vector $\mathbf{v}=\left(v_{0}, v_{1}, \cdots, v_{(n-1) m}\right)^{\top}$ such that for $i_{1}, \cdots, i_{m} \in$ $[n]$, we have

$$
\begin{equation*}
a_{i_{1} \cdots i_{m}} \equiv v_{i_{1}+i_{2}+\cdots+i_{m}-m} \tag{1}
\end{equation*}
$$

then we say that \mathcal{A} is an m th order Hankel tensor. Hankel tensors were introduced by Papy, De Lathauwer and Van Huffel in 2005 in the context of the harmonic retrieval problem, which is at the heart of many signal processing applications. In 2008, Badeau and Boyer proposed fast higher-order singular value decomposition (HOSVD) for third order Hankel tensors.

1.1. The Hankel Tensor Space

A real m th order n-dimensional tensor (hypermatrix) $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ is a multiarray of real entries $a_{i_{1} \cdots i_{m}}$, where $i_{j} \in[n]$ for $j \in[m]$. Denote the set of all real m th order n-dimensional tensors by $T_{m, n}$. Then $T_{m, n}$ is a linear space of dimension n^{m}. If the entries $a_{i_{1} \cdots i_{m}}$ are invariant under any permutation of their indices, then \mathcal{A} is a symmetric tensor. Denote the set of all real m th order n dimensional symmetric tensors by $S_{m, n}$. Then $S_{m, n}$ is a linear subspace of $T_{m, n}$. Clearly, a Hankel tensor is a symmetric tensor. Denote the set of all real m th order n-dimensional Hankel tensors by $H_{m, n}$. Then $H_{m, n}$ is a linear subspace of $S_{m, n}$, with dimension $(n-1) m+1$.

Throughout this talk, we assume that $m, n \geq 2$. We use small letters

Introduction

Associated Plane Tensors Generating Functions .

Vandermonde

Spectral Properties of
Bounds for the Largest

1.2. Motivation

People used to think that tensor (hypermatrix) problems are hard while matrix problems are tractable. This is only partially true. Actually, matrices are special cases of tensors (hypermatrices) with order two. Thus, special tensor (hypermatrix) problems may be tractable if tensors (hypermatrices) in these problems have simple structures. Since a Hankel tensor \mathcal{A} is defined by a vector \mathbf{v}, we believe that the Hankel tensor problem is tractable. On the other hand, Hankel tensors arise from applications, and Hankel matrices have a profound theory. These three factors stimulated us to study Hankel tensors.

Introduction

Associated Plane Tensors
Generating Functions .
Vandermonde
Spectral Properties of

1.3. The Paper

This talk is based upon the following paper:

Title Page

1.4. Positive Semidefinite Tensors and Copositive Tensors

Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in S_{m, n}$ and $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top} \in \Re^{n}$. Denote

$$
\mathcal{A} \mathbf{x}^{m}=\sum_{i_{1}, \cdots, i_{m}=1}^{n} a_{i_{1} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}} .
$$

Denote $\Re_{+}^{n}=\left\{\mathbf{x} \in \Re^{n}: \mathbf{x} \geq 0\right\}$. If $\mathcal{A} \mathbf{x}^{m} \geq 0$ for all $\mathrm{x} \in \Re_{+}^{n}$, then \mathcal{A} is called copositive. If $\mathcal{A} \mathbf{x}^{m}>0$ for all $\mathrm{x} \in \Re_{+}^{n}, \mathrm{x} \neq 0$, then \mathcal{A} is called strongly copositive. Suppose that m is even. If $\mathcal{A} \mathbf{x}^{m} \geq 0$ for all $\mathrm{x} \in \Re^{n}$, then \mathcal{A} is called positive semi-definite. If $\mathcal{A} \mathbf{x}^{m}>0$ for all $\mathrm{x} \in \Re^{n}, \mathbf{x} \neq 0$, then \mathcal{A} is called positive definite. Positive semi-definite symmetric tensors are useful in automatical control and higher-order diffusion tensor imaging. It is established by Qi in 2005 that an even order symmetric tensor $\mathcal{A} \in S_{m, n}$ is positive semidefinite if and only if all of its H -eigenvalues (or Z-eigenvalues) are nonnegative.

Introduction

Associated Plane Tensors

1.5. Copositive Hankel Tensors

We first give a necessary condition for a Hankel tensor to be copositive.
Proposition 1.1 Suppose that $\mathcal{A} \in H_{m, n}$ is defined by (1). If \mathcal{A} is copositive, then $v_{(i-1) m} \geq 0$ for $i \in[n]$.

Proof. Since $v_{(i-1) m}=\mathcal{A}\left(\mathbf{e}_{i}\right)^{m}$ for $i \in[n]$, the conclusion follows from the definition of copositive tensors.
As a positive semi-definite symmetric tensor is copositive, the condition of Proposition 1.1 is also a necessary condition for an even order Hankel tensor to be positive semi-definite.

2. Associated Plane Tensors

For any nonnegative integer k, define $s(k, m, n)$ as the number of distinct sets of indices $\left(i_{1}, \cdots, i_{m}\right)$ such that $i_{j} \in[n]$ for $j \in[m]$ and $i_{1}+\cdots+i_{m}-m=k$.
Then $s(0, m, n)=1, s(1, m, n)=m, s(2, m, n)=\frac{m(m+1)}{2}, \cdots$.

Title Page

44

Page 9 of 37

Go Back

2.1. Theorem 2.1

Theorem 2.1 If a Hankel tensor $\mathcal{A} \in H_{m, n}$ is copositive, then its associated plane tensor \mathcal{P} is copositive. If an even order Hankel tensor $\mathcal{A} \in H_{m, n}$ is positive semi-definite, then its associated plane tensor \mathcal{P} is positive semi-definite.

Proof. Suppose that \mathcal{A} is copositive. By Proposition 1.1, $v_{(n-1) m} \geq 0$. Let $\mathbf{y}=\left(y_{1}, y_{2}\right)^{\top} \in \Re_{+}^{2}$. If $y_{1}=y_{2}=0$, then clearly $\mathcal{P} \mathbf{y}^{(n-1) m}=0$. If $y_{1}=0$ and $y_{2} \neq 0$, then $\mathcal{P} \mathbf{y}^{(n-1) m}=v_{(n-1) m} y_{2}^{(n-1) m} \geq 0$. We now assume that $y_{1} \neq 0$. Let $u=\frac{y_{2}}{y_{1}}$. Then $u \geq 0$. We have

$$
\begin{equation*}
\mathcal{P} \mathbf{y}^{(n-1) m}=y_{1}^{(n-1) m} \sum_{k=0}^{(n-1) m}\binom{(n-1) m}{k} \cdot \frac{s(k, m, n) v_{k}}{\binom{n-1) m}{k}} u^{k}=y_{1}^{(n-1) m} \mathcal{A} \mathbf{u}^{m} \geq 0 \tag{2}
\end{equation*}
$$

where $\mathbf{u}=\left(1, u, u^{2}, \cdots, u^{n-1}\right)^{\top} \in \Re_{+}^{n}$. Thus, \mathcal{P} is copositive.
Suppose that m is even and \mathcal{A} is positive semi-definite. Then $(n-1) m$ is also even. By Proposition 1.1, $v_{(n-1) m} \geq 0$. Let $\mathbf{y}=\left(y_{1}, y_{2}\right)^{\top} \in \Re^{2}$. If $y_{1}=y_{2}=0$, then clearly $\mathcal{P} \mathbf{y}^{(n-1) m}=0$. If $y_{1}=0$ and $y_{2} \neq 0$, then $\mathcal{P} \mathbf{y}^{(n-1) m}=$ $v_{(n-1) m} y_{2}^{(n-1) m} \geq 0$. We now assume that $y_{1} \neq 0$. Let $u=\frac{y_{2}}{y_{1}}$. Then $u \neq 0$. positive semi-definite.

2.2. Questions

We may use the methods in Qi, Wang and Wang (2009) to check if \mathcal{P} is positive semi-definite or not when m is even. In [1], we presented an algorithm for checking if \mathcal{P} is copositive or not.

3. Generating Functions and Strong Hankel Tensors

Suppose that $\mathcal{A} \in H_{m, n}$ is defined by (1). Let $A=\left(a_{i j}\right)$ be an $\left\lceil\frac{(n-1) m+2}{2}\right\rceil \times$ when $(n-1) m$ is odd. Then A is a Hankel matrix, associated with the Hankel

Title Page

3.1. A Generating Function

Let \mathcal{A} be a Hankel tensor defined by (1). Let $f(t)$ be an absolutely integrable real valued function on the real line $(-\infty, \infty)$ such that

$$
\begin{equation*}
v_{k} \equiv \int_{-\infty}^{\infty} t^{k} f(t) d t \tag{3}
\end{equation*}
$$

for $k=0, \cdots,(n-1) m$. Then we say that f is a generating function of the Hankel tensor \mathcal{A}. We see that $f(t)$ is also the generating function of the associated Hankel matrix of \mathcal{A}. By the theory of Hankel matrices, $f(t)$ is welldefined.

3.2. Theorem 3.1

Theorem 3.1 A Hankel tensor \mathcal{A} has a nonnegative generating function if and only if it is a strong Hankel tensor. An even order strong Hankel tensor is positive semi-definite.

Associated Plane Tensors Generating Functions Vandermonde.

Spectral Properties of.
Bounds for the Largest.

$$
\int_{-\infty}^{\infty} t^{(i-1) m} f(t) d t \geq 0
$$

for $i \in[n]$.
On the other hand, suppose that $\mathcal{A} \in H_{m, n}$ has a generating function $f(t)$ such that (3) holds. If \mathcal{A} is copositive, then

Page 14 of 37

3.3. Proof

Proof. By the famous Hamburger moment problem, such a nonnegative generating function exists if and only if the associated Hankel matrix is positive semi-definite, i.e., \mathcal{A} is a strong Hankel tensor. On the other hand, suppose that \mathcal{A} has such a nonnegative generating function f and m is even. Then for any $\mathrm{x} \in \Re^{n}$, we have

$$
\begin{aligned}
\mathcal{A} \mathbf{x}^{m} & =\sum_{i_{1}, \cdots, i_{m}=1}^{n} a_{i_{1} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}} \\
& =\sum_{i_{1}, \cdots, i_{m}=1}^{n} \int_{-\infty}^{\infty} t^{i_{1}+\cdots+i_{m}-m} x_{i_{1}} \cdots x_{i_{m}} f(t) d t \\
& =\int_{-\infty}^{\infty}\left(\sum_{i=1}^{n} x_{i} t^{i-1}\right)^{m} f(t) d t \\
& \geq 0 .
\end{aligned}
$$

-

Thus, if m is even and \mathcal{A} is a strong Hankel tensor, then \mathcal{A} is positive semidefinite.
The final conclusion follows from (3) and Proposition 1.1.

3.4. A Counter Example

We now give an example of a positive semi-definite Hankel tensor, which is not a strong Hankel tensor. Let $m=4$ and $n=2$. Let $v_{0}=v_{4}=1, v_{2}=-\frac{1}{6}$, and $v_{1}=v_{3}=0$. Let \mathcal{A} be defined by (1). Then for any $\mathbf{x} \in \Re^{2}$, we have

$$
\mathcal{A} \mathbf{x}^{4}=v_{0} x_{1}^{4}+4 v_{1} x_{1}^{3} v_{2}+6 v_{2} x_{1}^{2} x_{2}^{2}+4 v_{3} x_{1} x_{2}^{3}+v_{4} x_{2}^{4}=x_{1}^{4}-x_{1}^{2} x_{2}^{2}+x_{2}^{4} \geq 0 .
$$

3.5. Hadamard Product

We now discuss the Hadamard product of two strong Hankel tensors. Let $\mathcal{A}=$ $\left(a_{i_{1} \cdots i_{m}}\right), \mathcal{B}=\left(b_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$. Define the Hadamard product of \mathcal{A} and \mathcal{B} as $\mathcal{A} \circ \mathcal{B}=\left(a_{i_{1} \cdots i_{m}} b_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$. Clearly, the Hadamard product of two Hankel tensors is a Hankel tensor.

Proposition 3.1 The Hadamard product of two strong Hankel tensors is a strong Hankel tensor.

Proof. Let \mathcal{A} and \mathcal{B} be two strong Hankel tensors in $H_{m, n}$. Let A and B be Hankel matrices associated with \mathcal{A} and \mathcal{B} respectively, such that A and B are positive semi-definite. Clearly, the Hadamard product of A and B is a Hankel matrix associated with the Hadamard product of \mathcal{A} and \mathcal{B}. By the Shur product

3.6. A Counter Example

On the other hand, the Hadamard product of two positive semi-definite Hankel tensors may not be positive semi-definite. Assume that $m=4$ and $n=2$. Let \mathcal{A} be the example given above. Then \mathcal{A} is a positive semi-definite Hankel tensor. On the other hand, let $\mathcal{B}=\left(b_{i_{1} i_{2} i_{3} i_{4}}\right) \in S_{4,2}$ be defined by $b_{i_{1} i_{2} i_{3} i_{4}}=1$ if $i_{1}+i_{2}+i_{3}+i_{4}=6$, and $b_{i_{1} i_{2} i_{3} i_{4}}=0$ otherwise. We may verify that \mathcal{B} is a strong Hankel tensor, thus a positive semi-definite Hankel tensor. It is easy to verify that $\mathcal{A} \circ \mathcal{B}$ is not positive semi-definite. Note here that \mathcal{A} is not a strong Hankel tensor. Thus, this example does not contradict Proposition 3.1.

4. Vandermonde Decomposition and Complete Hankel Tensors

For any vector $\mathbf{u} \in \Re^{n}, \mathbf{u}^{m}$ is a rank-one m th order symmetric n-dimensional

Title Page

4 4

Page 19 of 37

Go Back

4.1. Theorem 4.1

Theorem 4.1 Let $\mathcal{A} \in S_{m, n}$. Then \mathcal{A} is a Hankel tensor if and only if it has a Vandermonde decomposition (4). In this case, we have $r \leq(n-1) m+1$.
Suppose that \mathcal{A} has a Vandermonde decomposition (4). If \mathcal{A} is copositive, then

$$
\begin{equation*}
\sum_{k=1}^{r} \alpha_{k} u_{k}^{(i-1) n} \geq 0, \text { for } i \in[n] \tag{5}
\end{equation*}
$$

On the other other hand, if m is even and $\alpha_{k}>0$ for $i \in[r]$, then \mathcal{A} is positive semi-definite.

Go Back

4.2. Proof

Proof. Suppose that \mathcal{A} has a Vandermonde decomposition (4). Let

$$
\begin{equation*}
v_{i}=\sum_{k=1}^{r} \alpha_{k} u_{k}^{i}, \text { for } i=0, \cdots,(m-1) n \tag{6}
\end{equation*}
$$

By (4), we see that (1) holds. Thus, \mathcal{A} is a Hankel tensor.
On the other hand, assume that \mathcal{A} is a Hankel tensor defined by (1). Let $r=$ $(m-1) n+1$. Pick real numbers $u_{k}, k \in[r]$ such that $u_{i} \neq u_{j}$ for $i \neq j$. By matrix analysis, the coefficient matrix of the linear system (6) with $\alpha_{k}, k \in[r]$ as variables, is a Vandermonde matrix, which is nonsingular. Thus, the linear system (6) has a solution $\alpha_{k}, k \in[r]$. Substituting such $\alpha_{k}, k=1, \cdots, r$ to (4), we see that (4) holds, i.e., \mathcal{A} has a Vandermonde decomposition.
Suppose that \mathcal{A} has a Vandermonde decomposition (4). If \mathcal{A} is copositive, then (5) follows from (6) and Proposition 1.1. On the other hand, assume that m is even. Suppose (4) holds with $\alpha_{k}>0, k \in[r]$. For any $\mathbf{x} \in \Re^{n}$, we have

$$
\mathcal{A} \mathbf{x}^{m}=\sum_{k=1}^{r} \alpha_{k}\left(\mathbf{u}_{k}^{\top} \mathbf{x}\right)^{m} \geq 0
$$

Thus, \mathcal{A} is positive semi-definite.

4.3. Complete Hankel Tensors

In (4), if $\alpha_{k}>0, k \in[r]$, then we say that \mathcal{A} has a positive Vandermonde decomposition and call \mathcal{A} a complete Hankel Tensor. Thus, Theorem 4.1 says that an even order complete Hankel tensor is positive semi-definite. We will study the spectral properties of odd order complete Hankel tensors in the next section.
By (6), if $\alpha_{k}>0$ for $k \in[r]$, then v_{i} is nonnegative if i is even. Thus, the counterexample \mathcal{A}, given in the last section, is not a complete Hankel tensor as it has $v_{2}<0$. This implies that a positive semi-definite Hankel tensor may not be a complete Hankel tensor.

4.4. Hadamard Product

Proposition 4.1 The Hadamard product of two complete Hankel tensors is a complete Hankel tensor.

Proof. Suppose that $\mathcal{A}, \mathcal{B} \in H_{m, n}$ are two complete Hankel tensors. Then we may assume that each of \mathcal{A} and \mathcal{B} has a positive Vandermonde decomposition:

$$
\mathcal{A}=\sum_{k=1}^{r} \alpha_{k}\left(\mathbf{u}_{k}\right)^{m}
$$

and

$$
\mathcal{B}=\sum_{j=1}^{s} \beta_{j}\left(\mathbf{v}_{j}\right)^{m}
$$

where $\alpha_{k}>0, \mathbf{u}_{k}=\left(1, u_{k}, u_{k}^{2}, \cdots, u_{k}^{n-1}\right)^{\top}$ are Vandermonde vectors for $k \in$ $[r], \beta_{j}>0, \mathbf{v}_{j}=\left(1, v_{j}, v_{j}^{2}, \cdots, v_{j}^{n-1}\right)^{\top}$ are Vandermonde vectors for $j \in[s]$. Then the Vandermonde product of \mathcal{A} and \mathcal{B} is

$$
\mathcal{A} \circ \mathcal{B}=\sum_{k=1}^{r} \sum_{j=1}^{s} \alpha_{k} \beta_{j}\left(\mathbf{w}_{k j}\right)^{\top},
$$

Go Back
where $\alpha_{k} \beta_{j}>0, \mathbf{w}_{k j}=\left(1, u_{k} v_{j},\left(u_{k} v_{j}\right)^{2}, \cdots,\left(u_{k} v_{j}\right)^{n-1}\right)^{\top}$ are Vandermonde vectors for $k \in[r]$ and $j \in[s]$. We see that $\mathcal{A} \circ \mathcal{B}$ has a positive Vandermonde decomposition, thus a complete Hankel tensor.

4.5. Summary

We may summarize the results on Hadamard products. The Hadarmard product of two Hankel tensors is a Hankel tensor. The Hadarmard product of two strong Hankel tensors is a strong Hankel tensor. The Hadarmard product of two complete Hankel tensors is a complete Hankel tensor. But the Hadarmard product of two positive semi-definite Hankel tensors may not be positive semi-definite.

Can we characterize a positive semi-definite Hankel tensor by its Vandermonde decomposition? Is a strong Hankel tensor a complete Hankel tensor? Is a com-

5. Spectral Properties of Odd Order Hankel Tensors

 nonnegative, as strong Hankel tensors and complete Hankel tensors are positive semi-definite. In this section, we discuss spectral properties of odd order complete and strong Hankel tensors. Hence, assume that m is odd in this section.
5.1. Eigenvalues and Eigenvectors

We now briefly review the definition of eigenvalues, H-eigenvalues Eeigenvalues and Z-eigenvalues of a real m th order n-dimensional symmetric tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in S_{m, n}$. Let $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top} \in C^{n}$. Then $\mathcal{A} \mathbf{x}^{m-1}$ is an n-dimensional vector, with its i th component as $\sum_{i_{2} \cdots i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}$. For any vector $\mathbf{x} \in C^{n}, \mathbf{x}^{[m-1]}$ is a vector in C^{n}, with its i th component as x_{i}^{m-1}. If $\mathcal{A} \mathbf{x}^{m-1}=\lambda \mathbf{x}^{[m-1]}$ for some $\lambda \in C$ and $\mathbf{x} \in C^{n} \backslash\{0\}$, then λ is called an eigen-

5.2. H-Eigenvalues of Complete Hankel Tensors

Proposition 5.1 Suppose that m is odd and $\mathcal{A} \in H_{m, n}$ is a complete Hankel tensor. Assume that \mathcal{A} has at least one H-eigenvalue. Then all the H-eigenvalues of \mathcal{A} are nonnegative. Let λ be an H-eigenvalue of \mathcal{A}, with an H-eigenvector $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$. Then either $\lambda=0$ or $\lambda>0$ with $x_{1} \neq 0$.
Proof. By the definition of complete Hankel tensors, \mathcal{A} has a Vandermonde decomposition (4), with $\alpha_{k}>0$ for $k \in[r]$. Suppose that \mathcal{A} has an H -eigenvalue λ associated with an H -eigenvector $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$. Then for $i \in[n]$, we have

$$
\begin{equation*}
\lambda x_{i}^{m-1}=\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}=\sum_{k=1}^{r} \alpha_{k} u_{k}^{i-1}\left[\left(\mathbf{u}_{k}\right)^{\top} \mathbf{x}\right]^{m-1} \tag{7}
\end{equation*}
$$

If $\left(\mathbf{u}_{k}\right)^{\top} \mathbf{x}=0$ for all $k \in[r]$, then the right hand side of (7) is 0 . Since $\mathbf{x} \neq \mathbf{0}$,

In general an odd order symmetric tensor may not have H-eigenvalues. Does a complete Hankel tensor always have an H -eigenvalue?

5.3. Z-Eigenvalues of Complete Hankel Tensors

Proposition 5.2 Suppose that m is odd and $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$ is a Zeigenvector of a complete Hankel tensor $\mathcal{A} \in H_{m, n}$, associated with a Zeigenvalue λ. Then $x_{i} \geq 0$ for all odd i and $x_{1}>0$ if $\lambda>0$; and $x_{i} \leq 0$ for all odd i and $x_{1}<0$ if $\lambda<0$.

Proof. Again, by the definition of complete Hankel tensors, \mathcal{A} has a Vandermonde decomposition (4), with $\alpha_{k}>0$ for $k \in[r]$. Suppose that \mathcal{A} has a Z-eigenvalue λ associated with a Z-eigenvector $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$. Then for $i \in[n]$, we have

$$
\begin{equation*}
\lambda x_{i}=\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}=\sum_{k=1}^{r} \alpha_{k} u_{k}^{i-1}\left[\left(\mathbf{u}_{k}\right)^{\top} \mathbf{x}\right]^{m-1} . \tag{8}
\end{equation*}
$$

If $\left(\mathbf{u}_{k}\right)^{\top} \mathbf{x}=0$ for all $k \in[r]$, then the right hand side of (8) is 0 . Since $\mathbf{x} \neq \mathbf{0}$, we may pick i such that $x_{i} \neq 0$. Then (8) implies that $\lambda=0$. hand side of (8) is nonnegative. This implies that $\lambda x_{i} \geq 0$. The conclusion on x_{i} with i odd follows. Let $i=1$. Then the the right hand side of (8) is positive. This implies that $\lambda x_{1}>0$. The conclusion on x_{1} follows now.

Go Back

5.4. Z-Eigenvalues of Strong Hankel Tensors

Proposition 5.3 Suppose that m is odd and $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$ is a Zeigenvector of a strong Hankel tensor $\mathcal{A} \in H_{m, n}$, associated with a Z-eigenvalue λ. Then $x_{i} \geq 0$ for all odd i if $\lambda>0$; and $x_{i} \leq 0$ for all odd i if $\lambda<0$.

Proof. By Theorem $1, \mathcal{A}$ has a nonnegative generating function $f(t)$ such that (3) holds. Suppose that \mathcal{A} has a Z-eigenvalue λ associated with a Z-eigenvector $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$. Then for $i \in[n]$, we have

$$
\begin{align*}
\lambda x_{i} & =\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i} \\
& =\sum_{i_{2}, \cdots, i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} \\
& =\sum_{i_{2}, \cdots, i_{m}=1}^{n} \int_{-\infty}^{\infty} t^{i+i_{2}+\cdots+i_{m}-m} x_{i_{1}} \cdots x_{i_{m}} f(t) d t \\
& =\int_{-\infty}^{\infty} t^{i-1}\left(\sum_{i=1}^{n} x_{i} t^{i-1}\right)^{m-1} f(t) d t \tag{9}
\end{align*}
$$

Let i be odd. Then the the right hand side of (9) is nonnegative. The conclusion follows now.

5.5. Odd Order Positive Semi-Definite Tensors

Note that we miss a result of the H -eigenvalues of an odd order strong Hankel tensor. Are all the H-eigenvalues of an odd order strong Hankel tensor nonnegative?

Similar spectral properties hold for odd order Laplacian tensors and odd order completely positive tensors. A common point is that such classes of symmetric tensors are positive semi-definite when the order is even. Thus, we may think if we may define some odd order "positive semi-definite" symmetric tensors, with such spectral properties. Further study is needed on such a phenomenon.

6. Bounds for the Largest and the Smallest ZEigenvalues

Let $\mathcal{A} \in S_{m, n}$. Then \mathcal{A} always has Z-eigenvalues. Denote the smallest and the largest Z -eigenvalue of \mathcal{A} by $\lambda_{\min }(\mathcal{A})$ and $\lambda_{\max }(\mathcal{A})$ respectively. We always have

$$
\begin{equation*}
\lambda_{\min }(\mathcal{A})=\min \left\{\mathcal{A} \mathbf{x}^{m}: \mathbf{x} \in \Re^{n}, \mathbf{x}^{\top} \mathbf{x}=1\right\} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\max }(\mathcal{A})=\max \left\{\mathcal{A} \mathbf{x}^{m}: \mathbf{x} \in \Re^{n}, \mathbf{x}^{\top} \mathbf{x}=1\right\} . \tag{11}
\end{equation*}
$$

If m is even, \mathcal{A} is positive semi-definite if and only if $\lambda_{\min }(\mathcal{A}) \geq 0$. If m is odd, then $\lambda_{\max }(\mathcal{A}) \geq 0$ and $\lambda_{\min }(\mathcal{A})=-\lambda_{\max }(\mathcal{A})$. In general, $\max \left\{\left|\lambda_{\min }(\mathcal{A})\right|,\left|\lambda_{\max }(\mathcal{A})\right|\right\}$ is a norm of \mathcal{A} in the space $S_{m, n}$. If $\left|\lambda_{\min }(\mathcal{A})\right|=$ $\max \left\{\left|\lambda_{\min }(\mathcal{A})\right|,\left|\lambda_{\max }(\mathcal{A})\right|\right\}$, then $\lambda_{\min }(\mathcal{A})$ and its corresponding eigenvector x form the best rank-one approximation to \mathcal{A}. Similarly, if $\left|\lambda_{\max }(\mathcal{A})\right|=$ $\max \left\{\left|\lambda_{\min }(\mathcal{A})\right|,\left|\lambda_{\max }(\mathcal{A})\right|\right\}$, then $\lambda_{\max }(\mathcal{A})$ and its corresponding eigenvector x form the best rank-one approximation to \mathcal{A}. Let $\mathbf{x} \in \Re^{n}, \mathbf{x} \neq \mathbf{0}$. By (10) and (11), we have

$$
\begin{equation*}
\lambda_{\min }(\mathcal{A}) \leq \frac{\mathcal{A} \mathbf{x}^{m}}{\|\mathrm{x}\|_{2}^{m}} \leq \lambda_{\max }(\mathcal{A}) \tag{12}
\end{equation*}
$$

6.1. Bounds

Proposition 6.1 Suppose that $\mathcal{A} \in H_{m, n}$. Then

$$
\lambda_{\min }(\mathcal{A}) \leq \min _{i \in[n]} v_{(i-1) m} \leq \max _{i \in[n]} v_{(i-1) m} \leq \lambda_{\max }(\mathcal{A}) .
$$

Proof. Since $v_{(i-1) m}=\mathcal{A}\left(\mathbf{e}_{i}\right)^{m}$ for $i \in[n]$, the conclusion follows from (12).

Introduction

Associated Plane Tensors

$$
\begin{equation*}
\sqrt{\sum_{j=0}^{(n-1) m} z_{1}^{2(n-1) m-2 j} z_{2}^{2 j}} \lambda_{\max }(\mathcal{A}) \geq \lambda_{\max }(\mathcal{P}) \tag{14}
\end{equation*}
$$

6.2. Proof

Proof. If $y_{1}=0$, since $y_{1}^{2}+y_{2}^{2}=1$, then

$$
\sqrt{\sum_{j=0}^{(n-1) m} y_{1}^{2(n-1) m-2 j} y_{2}^{2 j}}=1 .
$$

We have
$\lambda_{\min }(\mathcal{P})=\mathcal{P} \mathbf{y}^{(n-1) m}=v_{(n-1) m} \geq \lambda_{\min }(\mathcal{A})=\sqrt{\sum_{j=0}^{(n-1) m} y_{1}^{2(n-1) m-2 j} y_{2}^{2 j}} \lambda_{\min }(\mathcal{A})$,
where the inequality is due to Proposition 6.1. Thus, (13) holds.

Suppose that $y_{1} \neq 0$. Let $u=\frac{y_{2}}{y_{1}}$ and $\mathbf{u}=\left(1, u, u^{2}, \cdots, u^{n-1}\right)^{\top} \in \Re^{n}$. Then

$$
\begin{aligned}
\lambda_{\min }(\mathcal{P}) & =\mathcal{P}_{\mathbf{y}}{ }^{(n-1) m} \\
& =y_{1}^{(n-1) m} \sum_{k=0}^{(n-1) m}\left(\frac{(n-1) m}{k}\right) \cdot \frac{s_{k, m} v_{k}}{\binom{(n-1) m}{k}} u^{k} \\
& =\left|y_{1}^{(n-1) m}\right| \mathcal{A} \mathbf{u}^{m} \\
& =\left|y_{1}^{(n-1) m}\right|\|\mathbf{u}\|_{2}^{m} \frac{\mathcal{A} \mathbf{u}^{m}}{\|\mathbf{u}\|_{2}^{m}} \\
& =\sqrt{\sum_{j=0}^{(n-1) m} y_{1}^{2(n-1) m-2 j} y_{2}^{2 j}} \frac{\mathcal{A} \mathbf{u}^{m}}{\|\mathbf{u}\|_{2}^{m}} \\
& \geq \sqrt{\sum_{j=0}^{(n-1) m} y_{1}^{2(n-1) m-2 j} y_{2}^{2 j}} \lambda_{\min }(\mathcal{A})
\end{aligned}
$$

Associated Plane Tensors

Generating Functions .

Vandermonde
Spectral Properties of

6.3. Question

Suppose that a Hankel tensor \mathcal{A} is associated with a Hankel matrix A. Can we use the largest and the smallest eigenvalues of A to bound the largest and the smallest H -eigenvalues (Z-eigenvalues) of \mathcal{A} ?

Title Page

4

Page 35 of 37

Go Back

7. Final Remarks

In this talk, we make an initial study on Hankel tensors. We see that Hankel tensors have a very special structure, hence have very special properties. We associate a Hankel tensor with a Hankel matrix, a symmetric plane tensor, generating functions and Vandermonde decompositions. They will be useful tools for further study on Hankel tensors.

Some questions have already been raised. Here are some further questions.

1. Badeau and Boyer (2008) proposed fast higher-order singular value decomposition (HOSVD) for third order Hankel tensors. Can we construct some efficient algorithms for the largest and the smallest H -eigenvalues (Z-eigenvalues) of a Hankel tensor, or a strong Hankel tensor, or a complete Hankel tensor?
2. In general, it is NP-hard to compute the largest and the smallest H -eigenvalues (Z-eigenvalues) of a symmetric tensor. What is the complexity for computing the smallest H-eigenvalues (Z-eigenvalues) of a Hankel tensor, a strong Hankel tensor, and a complete Hankel tensor?

7.1. More Questions

3. Proposition 8 of Qi (2005) says that the determinants of all the principal symmetric sub-tensors of a positive semi-definite tensor are nonnegative. The converse is not true in general. Is the converse of Proposition 8 of Qi (2005) true
4. The theory of Hankel matrices is based upon finite and infinite Hankel ma-
trices as well as Hankel operators. Should we also study infinite Hankel tensors
5. The theory of Hankel matrices is based upon finite and infinite Hankel ma-
trices as well as Hankel operators. Should we also study infinite Hankel tensors and multi-linear Hankel operators? for Hankel tensors?
